Python Yolo8:YOLOV6

Python Yolo8:YOLOV6

1. 准备

新建一个虚拟环境
# 创建虚拟环境 conda create -n yolov6env python=3.8 # 这种方式创建出来没有name,该文件夹 PS D:\Cumtb_Code> conda create --prefix=D:\Cumtb_Code\mincondatest python=3.8 # 进入虚拟环境,我这里将文件路径移动到了目录下 D:\Cumtb_Code\yolov6env>conda activate d:\Cumtb_Code\yolov6env

2. YOLOV6

2.1 拉取Yolov6

git clone https://github.com/meituan/YOLOv6 cd YOLOv6

2.2 安装相应的库

a. 使用pip安装
会报Torch版本错误!raise AssertionError("Torch not compiled with CUDA enabled")
pip install -r requirements.txt
# 验证Torch import torch print(torch.__version__) print(torch.cuda.is_available())
Tips:📢📢📢:我在conda虚拟环境下,安装pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple 仍然会提示torch.cuda.is_available()还是为false
b.使用conda安装
PyTorch官方查看CUDA版本
 
notion image
conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge
notion image

2.2 下载测试模型pt

我这里下载yolov6s.pt进行测试,在项目下新建一个weight文件夹,用于放.pt文件

2.3 运行测试

# 单个文件 python tools/infer.py --weights weight/yolov6s.pt --source data/images/image1.jpg # 文件夹下的多个文件 python tools/infer.py --weights weight/yolov6s.pt --source data/images
运行结果在YOLOv6\runs\inference\exp 目录下
notion image

3. YOLOV6导出模型

3.1 导出FP32 ONNX模型

python ./deploy/ONNX/export_onnx.py --weights weight/yolov6s.pt --img 640 --batch 1 --end2end
notion image

3.2 导出FP16 ONNX模型

python ./deploy/ONNX/export_onnx.py --weights weight/yolov6s.pt --img 640 --batch 1 --end2end --half

3.3 导出engine模型

使用Tensorrt官方工具转换engine模型,FP32预测删除--fp16参数即可
将yolov6s.onnx文件放在D:\TensorRT-8.4.1.5\bin文件夹下,CMD运行,输入以下命令:
# fp32 trtexec --onnx=yolov6s.onnx --saveEngine=yolov6s.engine --workspace=30 # fp16 trtexec --onnx=yolov6s.onnx --saveEngine=yolov6s.engine --fp16 --workspace=30
notion image

安装tensorrt

切换到TensorRT文件夹的路径下:cd xxxxx/xxxxx/TensorRT-x.x.x.x
查看文件:dir
我们需要的是graphsurgeon, onnx-graphsurgeon, python, uff这几个文件夹下的python wheel文件

安装

安装时文件名使用tab键自动补全
a. 安装Python下whl文件有多个支持python版本的轮子文件查看python版本python -V ,以python3.8为例
(d:\Cumtb_Code\yolov6env) D:\TensorRT-8.4.1.5>cd python (d:\Cumtb_Code\yolov6env) D:\TensorRT-8.4.1.5\python>pip install tensorrt-8.4.1.5-cp38-none-win_amd64.whl
b.安装uff下的whl文件tensorflow需要的,顺手安装上。
(d:\Cumtb_Code\yolov6env) D:\TensorRT-8.4.1.5>cd uff (d:\Cumtb_Code\yolov6env) D:\TensorRT-8.4.1.5\uff>pip install uff-0.6.9-py2.py3-none-any.whl
c.安装graphsurgeon下的whl文件
(d:\Cumtb_Code\yolov6env) D:\TensorRT-8.4.1.5>cd graphsurgeon (d:\Cumtb_Code\yolov6env) D:\TensorRT-8.4.1.5\graphsurgeon>pip install graphsurgeon-0.4.6-py2.py3-none-any.whl
d.安装onnx-graphsurgeon下的whl文件
(d:\Cumtb_Code\yolov6env) D:\TensorRT-8.4.1.5>cd onnx_graphsurgeon (d:\Cumtb_Code\yolov6env) D:\TensorRT-8.4.1.5\onnx_graphsurgeon>pip install onnx_graphsurgeon-0.3.12-py2.py3-none-any.whl
使用Python查看验证TensorRT
(d:\Cumtb_Code\yolov6env) D:\Cumtb_Code\yolov6env>python Python 3.8.13 (default, Mar 28 2022, 06:59:08) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import tensorrt >>> print(tensorrt.__version__) 8.4.1.5

运行

  • inferDemo.py
import cv2 import torch import numpy as np import tensorrt as trt from collections import OrderedDict,namedtuple class TRT_engine(): def __init__(self, weight) -> None: self.imgsz = [640,640] self.weight = weight self.device = torch.device('cuda:0') self.init_engine() def init_engine(self): # Infer TensorRT Engine self.Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) self.logger = trt.Logger(trt.Logger.INFO) trt.init_libnvinfer_plugins(self.logger, namespace="") with open(self.weight, 'rb') as self.f, trt.Runtime(self.logger) as self.runtime: self.model = self.runtime.deserialize_cuda_engine(self.f.read()) self.bindings = OrderedDict() self.fp16 = False for index in range(self.model.num_bindings): self.name = self.model.get_binding_name(index) self.dtype = trt.nptype(self.model.get_binding_dtype(index)) self.shape = tuple(self.model.get_binding_shape(index)) self.data = torch.from_numpy(np.empty(self.shape, dtype=np.dtype(self.dtype))).to(self.device) self.bindings[self.name] = self.Binding(self.name, self.dtype, self.shape, self.data, int(self.data.data_ptr())) if self.model.binding_is_input(index) and self.dtype == np.float16: self.fp16 = True self.binding_addrs = OrderedDict((n, d.ptr) for n, d in self.bindings.items()) self.context = self.model.create_execution_context() def letterbox(self,im,color=(114, 114, 114), auto=False, scaleup=True, stride=32): # Resize and pad image while meeting stride-multiple constraints shape = im.shape[:2] # current shape [height, width] new_shape = self.imgsz if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) self.r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better val mAP) self.r = min(self.r, 1.0) # Compute padding new_unpad = int(round(shape[1] * self.r)), int(round(shape[0] * self.r)) self.dw, self.dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle self.dw, self.dh = np.mod(self.dw, stride), np.mod(self.dh, stride) # wh padding self.dw /= 2 # divide padding into 2 sides self.dh /= 2 if shape[::-1] != new_unpad: # resize im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(self.dh - 0.1)), int(round(self.dh + 0.1)) left, right = int(round(self.dw - 0.1)), int(round(self.dw + 0.1)) self.img = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return self.img,self.r,self.dw,self.dh def preprocess(self,image): self.img,self.r,self.dw,self.dh = self.letterbox(image) self.img = cv2.cvtColor(self.img,cv2.COLOR_BGR2RGB) self.img = self.img.transpose((2, 0, 1)) self.img = np.expand_dims(self.img,0) self.img = np.ascontiguousarray(self.img) self.img = torch.from_numpy(self.img).to(self.device) self.img = self.img.half() if self.fp16 else self.img.float() self.img /= 255. return self.img def predict(self,img,threshold): img = self.preprocess(img) self.binding_addrs['image_arrays'] = int(img.data_ptr()) self.context.execute_v2(list(self.binding_addrs.values())) nums = self.bindings['num_dets'].data[0].tolist() boxes = self.bindings['det_boxes'].data[0].tolist() scores =self.bindings['det_scores'].data[0].tolist() classes = self.bindings['det_classes'].data[0].tolist() num = int(nums[0]) new_bboxes = [] for i in range(num): if(scores[i] < threshold): continue xmin = (boxes[i][0] - self.dw)/self.r ymin = (boxes[i][1] - self.dh)/self.r xmax = (boxes[i][2] - self.dw)/self.r ymax = (boxes[i][3] - self.dh)/self.r new_bboxes.append([classes[i],scores[i],xmin,ymin,xmax,ymax]) return new_bboxes def visualize(img,bbox_array): for temp in bbox_array: xmin = int(temp[2]) ymin = int(temp[3]) xmax = int(temp[4]) ymax = int(temp[5]) clas = int(temp[0]) score = temp[1] cv2.rectangle(img,(xmin,ymin),(xmax,ymax), (105, 237, 249), 2) img = cv2.putText(img, "class:"+str(clas)+" "+str(round(score,2)), (xmin,int(ymin)-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (105, 237, 249), 1) return img trt_engine = TRT_engine("./weight/yolov6s.engine") img1 = cv2.imread("./data/images/image1.jpg") results = trt_engine.predict(img1,threshold=0.5) img = visualize(img1,results) cv2.imshow("img",img) cv2.waitKey(0)
  • 这个地方运行报错了Torch版本问题
python inferDemo.py
 

报错

SyntaxError: invalid syntax

File "D:\Cumtb_Code\yolov6env\YOLOv6\yolov6\utils\torch_utils.py", line 105 flops, params = profile(deepcopy(model), inputs=(img,), verbose=False) ^ SyntaxError: invalid syntax
notion image
解决

ModuleNotFoundError: No module named 'tensorrt’

import tensorrt as trt时报错ModuleNotFoundError: No module named 'tensorrt'
解决
切换到TensorRT文件夹的路径下:cd xxxxx/xxxxx/TensorRT-x.x.x.x
查看文件:dir
我们需要的是graphsurgeon, onnx-graphsurgeon, python, uff这几个文件夹下的python wheel文件

安装

安装时文件名使用tab键自动补全
a. 安装Python下whl文件cd pythondir #有多个支持python版本的轮子文件python -V # 查看python版本pip install tensorrt-xxxxxxcp当前环境下python版本.whl剩下的直接装就行了,每个文件夹就一个wheel轮子文件。
b.安装uff下的whl文件tensorflow需要的,顺手安装上。
pip install uff/uff-0.6.9-py2.py3-none-any.whl
c.安装graphsurgeon下的whl文件
pip install graphsurgeon/graphsurgeon-x.x.x-py2.py3-none-any.whl
d.安装onnx-graphsurgeon下的whl文件
pip install onnx-graphsurgeon/onnx-graphsurgeon-x.x.x-py2.py3-none-any.whl

raise AssertionError("Torch not compiled with CUDA enabled")

报错raise AssertionError("Torch not compiled with CUDA enabled") AssertionError: Torch not compiled with CUDA enabled
分析
Pytorch和CUDA版本不兼容的问题上。问题的发现可以在终端中输入'python'命令,运行python后,输入
import torch print(torch.__version__) print(torch.cuda.is_available())
Tips:📢📢📢:我在conda虚拟环境下,安装pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple 仍然会提示torch.cuda.is_available()还是为false
b.使用conda安装
PyTorch官方查看CUDA版本
 
notion image
conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge
notion image