0. 准备
📢📢📢提前准备好相应的文件和文件夹
- python-opencv
1. 将视频转换为图片
''' Description: henggao_note version: v1.0.0 Date: 2022-03-16 23:35:09 LastEditors: henggao LastEditTime: 2022-03-17 09:18:06 ''' import cv2 cap = cv2.VideoCapture(r'D:\Cumtb_Code\file\kyrie.mp4') sucess = cap.isOpened() frame_count = 0 i = 0 while sucess: frame_count += 1 sucess, frame = cap.read() if (frame_count % 2 == 0): i += 1 cv2.imwrite(r'D:\Cumtb_Code\file\image\%d.jpg' % i, frame) cap.release()
2. 图片素描
''' Description: henggao_note version: v1.0.0 Date: 2022-03-17 08:40:35 LastEditors: henggao LastEditTime: 2022-03-17 09:40:29 ''' from PIL import Image import numpy as np def imageChange(path, num): print("1234") for num_count in range(num): a = np.asarray(Image.open(path + '\\' + str(num_count+1) + '.jpg').convert('L')).astype('float') # 根据灰度变化来模拟人类视觉的明暗程度 depth = 10. # 预设虚拟深度值为10 范围为0-100 grad = np.gradient(a) # 提取梯度值 grad_x, grad_y = grad # 提取xy方向梯度值解构赋给grad_x,grad_y # 利用像素之问的梯度值和虚拟深度值对图像进行重构 grad_x = grad_x * depth / 100 grad_y = grad_y*depth/100. # 根据深度调整xy方向梯度值 A = np.sqrt(grad_x**2+grad_y ** 2+1.) uni_x = grad_x/A uni_y = grad_y/A uni_z = 1./A vec_el = np.pi/2.2 # 光源的俯视角度弧度值 vec_az = np.pi/4. # 光源的方位角度弧度值 dx = np.cos(vec_el)*np.cos(vec_az) # 光源对x轴影响 dy = np.cos(vec_el)*np.sin(vec_az) # 光源对y轴影响 dz = np.sin(vec_el) # 光源对z轴影响 b = 255*(dx*uni_x+dy*uni_y+dz*uni_z) # 光源一化 b = b.clip(0, 255) # 为了避免数据越界,得生成辉度值裁剪至0-255区间 im = Image.fromarray(b.astype('uint8')) # 图像重构 im.save(path + '1\\'+str(num_count+1)+'.jpg') # 保存图片 if __name__ == '__main_': path = r'D:\Cumtb_Code\file\image' imageChange(path, 729) path = r'D:\Cumtb_Code\file\image' imageChange(path, 39)
3. 图片拼接
''' Description: henggao_note version: v1.0.0 Date: 2022-03-17 09:41:44 LastEditors: henggao LastEditTime: 2022-03-17 09:43:02 ''' from PIL import Image import numpy as np import cv2 import os from cv2 import VideoWriter_fourcc def Pic2Video(): imgPath = r'D:\Cumtb_Code\file\image1' videoPath = r'D:\Cumtb_Code\file\123.mp4' images = os.listdir(imgPath) images.sort(key=lambda x: int(x[:-4])) fps = 12 # 每秒25倾数 # VideoWriter_fourcc为视频编解码器(T,*4,2,0)一→.avi、P,,M,.avi)、(X,"V,T,D一>avi)、T,",E, fourcc = VideoWriter_fourcc(*"mp4v") image = Image.open(imgPath + '\\'+images[0]) videoWriter = cv2.VideoWriter(videoPath, fourcc, fps, image.size) for im_name in range(len(images)): frame = cv2.imread(imgPath+'\\'+images[im_name]) # 这里的路程只能是英文路程 # frame=cv2.imdecode(np.fromfile(imgPath + images[im_name),dtype=np.uint8),1)#t句i话的路径可以为中文路程 print(im_name) videoWriter.write(frame) print("图片转视频结束!") videoWriter.release() cv2.destroyAllWindows() if __name__ == '__main__': Pic2Video()
Pillow
图像处理库
安装
# 安装 pip install Pillow
使用
# coding=utf-8 from PIL import Image # demo1 # image = Image.open("person.jpg") # image.show() # demo2 # image = Image.new('RGB', (160, 90), (0, 0, 255)) # image.show() # deni3 image = Image.open("person.jpg") print('width: ', image.width) print('height: ', image.height) print('size: ', image.size) print('mode: ', image.mode) print('format: ', image.format) print('category: ', image.category) print('readonly: ', image.readonly) print('info: ', image.info)