Python Notes15:hdf5存储图像文件

Python Notes15:hdf5存储图像文件

1. 图片存为hdf5(灰度)

1.1 写数据

  • 将文件夹下的图片写成hdf5文件存储
import os import h5py import cv2 import numpy as np # 中文路径读不出来 img_path = r'D:\DataDemo' out_h5_path = r'D:\DataDemo\test_hdf5.h5' # 遍历指定地址下的所有图片,💥尺寸大小一样💥的的jpg文件 img_list = sorted(os.listdir(img_path)) # 确认图片的大小 flag = 0 # lags=1 读取彩色图像(BGR) ,flags=0 读取为灰度图像 image = cv2.imread(img_path + '\\2.jpg', flags=flag) # print(image) shape = np.array(image, dtype=np.uint8).shape # print(shape[0]) # print(shape[1]) num_img = len(img_list) # dataset = np.zeros((num_img, shape[0], shape[1], 3), np.float) dataset = np.zeros((num_img, shape[0], shape[1]), np.float) # print(dataset) cnt_num = 0 for img in img_list: if img.endswith(".jpg"): # print(img_path+'\\'+img) # flags=1 读取彩色图像(BGR) # flags=0 读取为灰度图像 gray_img = cv2.imread(img_path+'\\'+img, flags=flag) print(gray_img) # dataset[cnt_num, :, :, :] = gray_img dataset[cnt_num, :, :] = gray_img cnt_num += 1 # 存储为npy np.save(img_path+'\\gray.npy', dataset) # print('检验是否读取成功:') # print(dataset[1]) with h5py.File(out_h5_path, 'w') as f: f['gray'] = dataset # 将数据写入文件的主键train下面

1.2 读数据

import h5py import cv2 from matplotlib import pyplot as plt # 打开h5文件 filename = r'D:\DataDemo\test_hdf5.h5' f = h5py.File(filename, 'r') data = f['gray'][:] # cv成图 cv2.imshow('data', data[1].astype("uint8")) cv2.waitKey(0) cv2.destroyAllWindows() # plt成图,因为opencv读取的图片是BGR形式,想要用plt显示,则必须转成RGB形式 image = cv2.cvtColor(data[1].astype("uint8"), cv2.COLOR_BGR2RGB) plt.imshow(image) plt.xticks([]), plt.yticks([]) plt.show()
notion image
 

2. 图片存为hdf5(RGB)

2.1 写数据

  • 将文件夹下的图片写成hdf5文件存储
import os import h5py import cv2 from matplotlib import pyplot as plt import numpy as np # 中文路径读不出来 img_path = r'D:\DataDemo' out_h5_path = r'D:\DataDemo\test_hdf5.h5' # 遍历指定地址下的所有图片,💥尺寸大小一样💥的的jpg文件 img_list = sorted(os.listdir(img_path)) # 确认图片的大小 flag = 1 # lags=1 读取彩色图像(BGR) ,flags=0 读取为灰度图像 image = cv2.imread(img_path + '\\2.jpg', flags=flag) num_img = len(img_list) # np.uint8符号整数(0 to 255) shape = np.array(image, dtype=np.uint8).shape # print(shape) # RGB三原色 、创建四维数组 dataset = np.zeros((num_img, shape[0], shape[1], 3), np.float) cnt_num = 0 for img in img_list: if img.endswith(".jpg"): # flags=1 读取彩色图像(BGR) # flags=0 读取为灰度图像 img_data = cv2.imread(img_path+'\\'+img, flags=flag) # print(img_data) dataset[cnt_num, :, :, :] = img_data cnt_num += 1 print(dataset[0] == image) print(dataset[1] == image) with h5py.File(out_h5_path, 'w') as f: f['train'] = dataset
HDFView查看test_hdf5.h5 这里查看都是单色道数据。
notion image

2.2 读数据

  • 将h5数据成图
''' Description: henggao_note version: v1.0.0 Date: 2022-04-21 16:27:06 LastEditors: henggao LastEditTime: 2022-04-21 16:35:38 ''' import h5py import cv2 from matplotlib import pyplot as plt # 打开h5文件 filename = r'D:\DataDemo\test_hdf5.h5' f = h5py.File(filename, 'r') data = f['train'][:] # print(data[1]) # img_path = r'D:\DataDemo\2.jpg' # data1 = cv2.imread(img_path) # cv2.imshow('data',data1) # print(data[1] == data1) # 矩阵A(numpy.ndarray)转换数值类型B = A.astype("uint8"),否则会报错 # data[i],显示第几张 # cv成图 # cv2.imshow('data', data[1].astype("uint8")) # cv2.waitKey(0) # cv2.destroyAllWindows() # plt成图,因为opencv读取的图片是BGR形式,想要用plt显示,则必须转成RGB形式 image = cv2.cvtColor(data[1].astype("uint8"), cv2.COLOR_BGR2RGB) plt.imshow(image) plt.xticks([]), plt.yticks([]) plt.show()
cv成图
notion image
 
plt成图
notion image

3. 数据模型分析

灰度就是一个值,而RGB多嵌套一个数组

3.1 灰度数据矩阵

[[106 127 128 ... 175 160 172] [ 29 41 89 ... 166 177 190] [ 68 23 18 ... 173 182 137] ... [ 23 30 15 ... 22 11 7] [ 15 28 24 ... 33 25 8] [ 20 24 36 ... 34 32 5]]

3.2 RGB数据举证

[[[154 113 74] [178 135 92] [186 137 87] ... [216 184 143] [204 168 128] [216 180 140]] [[ 79 37 0] [ 92 49 6] [144 98 51] ... [209 175 132] [221 185 145] [236 198 156]] [[119 77 30] [ 73 32 0] [ 64 26 0] ... [219 182 138] [230 190 148] [185 146 102]] ... [[ 39 26 12] [ 44 33 19] [ 27 18 5] ... [ 31 25 14] [ 18 13 4] [ 11 10 0]] [[ 33 18 2] [ 46 31 15] [ 40 27 13] ... [ 42 34 27] [ 32 27 18] [ 13 11 0]] [[ 39 23 6] [ 42 28 10] [ 54 38 25] ... [ 43 35 28] [ 39 34 25] [ 12 8 0]]]