CasNote (6)试验数据-SEGY数据读写

CasNote (6)试验数据-SEGY数据读写

表设计

用python在cassandra命名空间seismic_keyspace里创建project_chunks_table表,表里的字段有project,sensor,trace,chunk,其中project为文本类型,sensor、trace为整数类型,chunk为二进制类型,大小设置为255K。以project和sensor为分区键,trace字段为Clustering Key。

写数据

将一个大小为1.96GB的segy数据,将文件分割为合适大小的 "chunks",每个 "chunk" 大小不超过 255 KB;在表project_chunks_table,chunk字段用来存储“chunk”,project字段值为全为proj_001,sensor为1,trace则按chunk的数量从1开始递增,请具体实现一下
import os import math from cassandra.cluster import Cluster # 连接到Cassandra集群 cassandra_host = ['192.168.92.159', '192.168.92.160','192.168.92.161'] cluster = Cluster(cassandra_host) # 替换为实际的Cassandra主机地址 session = cluster.connect() # 指定要处理的keyspace和table名称 keyspace_name = 'seismic_keyspace' table_name = 'project_chunks_table' # 切换到指定keyspace session.set_keyspace(keyspace_name) # 创建表的CQL查询语句,如果表不存在 create_table_query = f""" CREATE TABLE IF NOT EXISTS {table_name} ( project TEXT, sensor INT, trace INT, chunk BLOB, PRIMARY KEY ((project, sensor), trace) ) """ session.execute(create_table_query) # 分割SEGY文件并插入数据到表中 segy_file_path = '.\data\LX_SEGY005.segy' chunk_size = 255 * 1024 # 255 KB in bytes project = 'proj_001' sensor = 1 trace = 1 with open(segy_file_path, 'rb') as segy_file: while True: chunk_data = segy_file.read(chunk_size) if not chunk_data: break # 插入数据到表中 insert_query = f"INSERT INTO {table_name} (project, sensor, trace, chunk) VALUES (%s, %s, %s, %s)" session.execute(insert_query, (project, sensor, trace, chunk_data)) trace += 1 # 关闭连接 session.shutdown() cluster.shutdown()

查询keyspace中表

def query_tables_in_keyspace(keyspace_name): # 连接到Cassandra数据库 cluster = Cluster(['192.168.92.159', '192.168.92.160','192.168.92.161']) session = cluster.connect(keyspace_name) # 查询当前keyspace中的所有表 tables_query = "SELECT table_name FROM system_schema.tables WHERE keyspace_name = %s;" result = session.execute(tables_query, [keyspace_name]) # 打印表名 for row in result: print(row.table_name) # 关闭连接 cluster.shutdown() # 调用函数,传入keyspace名称 keyspace_name = 'seismic_keyspace' query_tables_in_keyspace(keyspace_name)
notion image

查询数据

from cassandra.cluster import Cluster # 连接到Cassandra集群 cassandra_host = ['192.168.92.159', '192.168.92.160','192.168.92.161'] cluster = Cluster(cassandra_host) # 替换为实际的Cassandra主机地址 session = cluster.connect() # 指定要查询的keyspace和table名称 keyspace_name = 'seismic_keyspace' table_name = 'project_chunks_table' # 切换到指定keyspace session.set_keyspace(keyspace_name) # 查询表的数据 query = f"SELECT project, sensor, trace, chunk FROM {table_name}" result = session.execute(query) # 输出查询结果 for row in result: print(f"Project: {row.project}, Sensor: {row.sensor}, Trace: {row.trace}, Chunk Size: {len(row.chunk)} bytes") # 关闭连接 session.shutdown() cluster.shutdown()
notion image

合并文件

python实现cassandra命名空间seimic_keyspace里表project_chunks_table,表里的字段有project,sensor,trace,chunk,其中project为文本类型,sensor、trace为整数类型,chunk为二进制类型,大小设置为255K。以project和sensor为分区键,trace字段为Clustering Key。将表的chunk字段记录的二进制数据读出,按Trace升序进行合并,合并的文件命名为common.segy,保存在data目录下
  • 将二进制文件合并成一个segy数据
from cassandra.cluster import Cluster import os # 连接到Cassandra集群 cassandra_host = ['192.168.92.159', '192.168.92.160', '192.168.92.161'] cluster = Cluster(cassandra_host) # 替换为实际的Cassandra主机地址 session = cluster.connect() # 指定要处理的keyspace和table名称 keyspace_name = 'seismic_keyspace' table_name = 'project_chunks_table' # 切换到指定keyspace session.set_keyspace(keyspace_name) # 查询分区键的唯一组合 unique_combinations_query = f"SELECT DISTINCT project, sensor FROM {table_name}" unique_combinations_result = session.execute(unique_combinations_query) # 合并数据的二进制变量 merged_data = b"" # 对每个唯一组合执行查询和数据合并 for combination_row in unique_combinations_result: project = combination_row.project sensor = combination_row.sensor # 查询并按trace升序获取chunk数据 query = f"SELECT trace, chunk FROM {table_name} WHERE project = %s AND sensor = %s ORDER BY trace" result = session.execute(query, (project, sensor)) # 合并chunk数据为一个大的二进制数据 for row in result: merged_data += row.chunk # 关闭连接 session.shutdown() cluster.shutdown() # 将合并后的数据保存为common.segy output_file_path = 'data/common.segy' # 保存的文件路径 with open(output_file_path, 'wb') as output_file: output_file.write(merged_data) print(f"Merged data saved to {output_file_path}")